
SIK BINDER //53

3
Programming

SIK BINDER //54

SIK BINDER //55

CHAPTER 3
Basic Operators and Comments

Name:
Date:

Often when you are programming you will need to do simple (and sometimes not so simple) mathematical operations. The
signs used to do this vary from very simple to confusing if you’ve never seen them before. Below is a table of definitions
as well as some examples:

Arithmetic operators are your standard mathematical
signs

Relational operators are used to compare values and
variables

Logical operators are used to join two or more
conditional statements together

+ (addition)
- (subtraction)
* (multiplication)
/ (division)
% (modulus)
= (assignment)

if (x!=7){
//loop body code here
}

Compares x to the number 7,
executes code inside body loop
if the value of x does not equal 7

if ((x==7)||(x==9)){
//loop body code here
}

Compares x to the number 7 and 9,
executes code inside body loop
if the value of x equals 7 or 9

== (equality)
!= (inequality)
> (greater-than)
< (less-than)
>= (greater than or equal to)
<= (less than or equal to)

Pay attention to = and ==.
= is used to assign variable values,
== to compare values.

! (NOT)
&& (AND)
|| (OR)

Arithmetic Operators

Relational Operator Example

Logical Operator Example:

Relational Operators

Logical Operators

// Basic Operators

SIK BINDER //56

As you use code other people have written you will notice //, /* and */ symbols. These are used to “comment” lines out
so they do not affect the code. This way people who write code can add comments to help you understand what the code
does. Good code has comments that explain what each block of code (functions, classes, etc.) does but does not explain
simpler portions of the code as this would be a waste of time. Commenting lines out is also a very useful tool when you
are writing code yourself. If you have a section of code you are working on, but isn’t quite finished or doesn’t work, you
can comment it out so it does not effect the rest of your code when you compile or upload it.

This is used to comment out a single line

//commented out line

This is used to start a section of commented lines

/*comments start here

This is used to end or close a section of
commented lines

comments end here*/

// /*

*/

// Comments

CHAPTER 3
Basic Operators and Comments

Name:
Date:

SIK BINDER //57

CHAPTER 3
Programming Concepts, Variables

Name:
Date:

// Vocabulary: Variable, Boolean,
Integer, Character, Value
Variables are one of the most important concepts in
computer programming. But what exactly are variables?
Variables are like baskets that hold pieces of information.
There are a couple different kinds of variables depending
on what kind of information you need to keep track
of. You have probably already heard of most of the
different kinds of variables. Here are the definitions of
three different kinds of variables. There are more types of
variables, but, let’s start with these.

• Boolean variable: A boolean variable can be true or false
(one or zero).
• Integer variable: An integer variable can be any whole
number between −32768 and 32767.
• Character variable: A character variable can be any one
letter (or punctuation or symbol).

Below is a robot, answer the questions to the right of the robot
and be as silly as you want. Then write the type of variable
you would use to store this information. For a boolean write
“boolean”, for an integer write “int” and for a character
write “char”.

The number, or character, you put into a variable is called
its value. Once you have created a variable you can change
the value whenever you need to. For example, if we decided
the robot is 1000 years old, in a year we need to be able to
change its age to 1001. First we need to create a variable
to keep track of its age. We can name the variable whatever
we want, but “age” makes sense so we’ll go with that. Then
we need to put a value into the variable. The first value was
1000, but a year later we delete that value and replace it
with the new value, 1001. Pretty easy, huh? If we wanted
to keep track of how old the robot used to be when we met
it we could create a new variable called “ageWeMet”. That

way when we have to change the “age” variable we can
keep track of how old the robot was when we met it in the
other variable “ageWeMet”. You may have noticed that there
are no spaces in the name of this second variable. That is
because variable names can’t have any spaces.

Circle the variable in the sentences below and put a box
around the value.

The robot’s favorite letter is Q. The robot’s height is 100 ft.

The robot’s power is on.

Is this robot good at skateboarding? _________________

How old is this robot?____________________________

What is the first letter of this robot’s name?____________

How many years has it been skateboarding?___________

Is it wearing pants? _____________________________

What is the first letter of the robot’s dog’s name? _______

Is the robot going to crash? _______________________

How many feet of air has this robot gotten? ___________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

SIK BINDER //58

Name:
Date:

CHAPTER 3
Programming Concepts, Boolean

// Vocabulary: Boolean, Declare, Assign
OK! You’re ready to start programming your first boolean
variable. Anytime you see italics like this it is an example
of how you would write something in the Arduino language.

• A Boolean variable is the simplest kind of variable, it is
either true or false.
• True is represented by a one or HIGH and false is
represented by a zero or LOW.
• HIGH can be used as true, but it means there is electricity
flowing through a circuit.
• LOW can be used as false, but it means there is no
electricity flowing through a circuit.
• To create a Boolean variable you type the following:
boolean variableName;
• Creating a variable is called “declaring” a variable.
• The variableName can be anything you like, but it should
make sense to you.

For example you could declare a Boolean variable named
dayLight(boolean dayLight;) that represents whether it is
daytime or not. Once you have declared your variable it is
not equal to anything, it is empty and waiting for you to set
it equal to true or false. To do this you type the following:
dayLight = true; or dayLight = 1;. (Don’t forget the ; at the
end, it’s very important! It is called a semicolon and it tells
the computer that you are finished doing something.)

This means that dayLight is true, and you can see the sun.
Setting a variable equal to a value is called “assigning”.
Declare three Boolean variables about the robot on this
page in the spaces below and then assign them values of
true or false (or one or zero). Remember, you can name the
variables whatever you want! They’re your variables, it’s up
to you. Look at the example above if you are unsure of how
to declare and assign. (Don’t forget the semicolons at the
end of each line, they’re important!)

Declare:

Assign:

List three of the silliest things you can think of that you
might keep track of with a boolean variable. Examples: Do
I have peanut butter in my ear? Are penguins good to use
as dodgeballs?

__

__

__

__

Now pick one of the silly ideas above. In the space below
declare your silly variable and then assign it a value. For
example: boolean peanutButter; peanutButter = true; This
means that I do have peanut butter in my ear... maybe I am
saving it for lunch.

__

__

__

__

SIK BINDER //59

CHAPTER 3
Programming Concepts, Integer

Name:
Date:

// Vocabulary: Boolean, Declare, Assign // Vocabulary: Integer, Declare, Assign
Wow! You’re ready to start programming your first integer
variable. Anytime you see italics it is an example of how you
would write something in Arduino language.

• An Integer variable is a number (no fractions or decimals)
between -32768 and 32767.
• To create an Integer variable you type the following:
int variableName;
• This is called “declaring” a variable.
• The variableName can be anything you like, but it should
make sense to you.
• To assign an Integer variable the value 120 type the
following: variableName = 120;

For example you could declare an Integer variable
named clouds (int clouds;) that represents the number of
clouds in the sky. Once you have declared your variable

it is not equal to anything, it is empty and waiting for
you to set it equal to a number between −32768 and
32767. To do this you type the following: clouds = 8;.
(Don’t forget the ; at the end. This is called a semicolon
and it’s how the computer knows you are finished doing
something.)

This means that you can see eight clouds in the sky. Setting
a variable equal to a value is called “assigning”. Declare
three Integer variables about the picture on this page in the
spaces below and then assign them values between −32768
and 32767. Include at least one variable with a negative value
and one variable with a value greater than ten. Feel free to
make up variables and values that you can’t actually see in
the picture. Try to keep it making sense. Look at the example
above if you are unsure of how to declare and assign. (Don’t
forget the semicolons at the end of each line!)

Declare:

Assign:

List three of the silliest things you can think of that you might keep track of with an integer variable. Example: How many
pieces of ham do I have in my pocket? How many bugs could you fit in a rocket?

Now pick one of the ideas above. In the space below declare your variable and assign it a value.
For example: int ham; ham = 1073; I either have big pockets or small pieces of ham.

SIK BINDER //60

CHAPTER 3
Programming Concepts, Char Variables

Name:
Date:

// Vocabulary: Character, Declare, Assign
OK! You’re ready to start programming your first character
variable. Anytime you see italics it is an example of how you
would write something in the Arduino language.

• A Character variable is a single letter, symbol or number.
• To create a Character variable you type the following:
char variableName;
• This is called “declaring” a variable.
• The variableName can be anything you like, but it should
make sense to you.
• To assign a Character variable the value “Q” you type
the following: variableName = ‘Q’;

For example you can declare a character variable named
weather (char weather;) that uses a letter to represents the
weather. You can use the letter R to mean it is raining, S for
snow, and C for clear. Once you have declared your variable
it is not equal to anything, it is empty and waiting for you to
set it equal to a character.

To do this you type the following: weather = ‘C’;. (Don’t forget
the ; at the end. This is called a semicolon and it’s how the
computer knows you are finished doing something.) Also,
there are many different character types other than a letter:
!?*%$&@ are all valid characters.

For example, weather = ‘C’; means that the sky is clear, but
that’s just because you decided it means that. C could mean
whatever you need to keep track of. For example C could
mean that it is cold out, if that’s what you decided. Setting
a variable equal to a value is called “assigning”. Declare
three Character variables about the picture on this page in
the spaces below and then assign them character values
that make sense. Check the example when you are assigning
a value, this can get tricky. Make sure the variable names
describe the object you want to keep track of. Look at the
example above if you are unsure of how to declare and
assign. (Don’t forget the quotation marks and semicolons
at the end of each line!)

List three of the silliest things you can think of that you might keep track of with a Character variable. Example: What color
lollipops do robots eat? What’s a pirate’s favorite letter?

Declare:

Assign:

SIK BINDER //61

CHAPTER 3
Programming Concepts, Variables

Name:
Date:

Purpose: Group activity teaching how to declare and assign
the variable types Boolean, Integer and Character. Text in
italics denotes actual Arduino code.

Materials: None

Vocabulary to be explained prior to activity:
Variable: A way to store a piece of information that may
change.
Value: Piece of information assigned to a variable.
Declaration: Creating a variable, when you declare a variable
it has no value.
Assignment: Sets or resets the value of a variable.

Types of variables:
Boolean: This variable type has only two values. True or false,
which can also be represented as one and zero or HIGH and
LOW. Arduino syntax: boolean
Integer: This variable type is used to store whole
numbers. Because RedBoard uses two bytes to store
integers it can only store numbers from −32768 to 32767.
Arduino syntax: int

Character: This variable is used to store any character
you can type on a keyboard (and some you can’t). It is
basically an integer, but it is used for letters and characters.
It is mainly used to print messages or send messages when
human interaction is needed. Arduino syntax: char

Declaring variables:
Boolean: boolean variableName;
variableName can be anything as long as it makes sense
and has no spaces in it.

Example: boolean pamHappy; This variable could be used to
indicate if Pam is happy or not. Remember the semicolon,
it’s important!

Integer: int variableName;
variableName can be anything as long as it makes sense
and has no spaces in it.
Example: int pamAge; This variable could be used to indicate
how old Pam is. Remember the semicolon, it’s important!

Character: char variableName;
variableName can be anything as long as it makes sense
and has no spaces in it.
Example: char pamShirtColor; This variable could be used to
indicate the color of Pam’s shirt. Remember the semicolon,
it’s important!

Assigning variables:
Assigning variables is really easy! No matter what type of
variable you simply type the variable name followed by a
single equals sign and then the value you are assigning to your
variable followed by a semicolon. Example: pamShirtColor
= ‘p’; Values have certain requirements depending on their
types. A boolean needs to be true or false (or one or zero), an
integer should be a number between -32768 and 32767 and
a character should be a single character with single quotation
marks around it. Finally, remember the semicolon, it’s
important!

Activity

Activity

SIK BINDER //62

Activity:
Students should have completed the introduction to variables
worksheet that comes with this activity. Examples of
variable types, declarations and assignments can be posted
somewhere visible in the classroom to help students who are
not completely comfortable with the concepts yet.

Students go around in a circle declaring variables that apply
to themselves and other students. For example, if they wish to
declare a variable about their age they would need to declare
an integer variable with a name that makes sense. It is up to
the students how specific they want to get, they can declare
an integer variable named age, or they could go so far as
to declare a variable named pamAge. The difference is that
the variable age can apply to anyone, the variable pamAge
is specific to a person named Pam. A boolean variable can
be used for any quality that is either yes or no. For example,
a student might declare pamHappy as a boolean variable to
indicate whether Pam is happy or not. Character variables can
be used to keep track of anything that does not fit nicely into
either integer or boolean. For example, a student may create
a variable called pamShirtColor. Declaration of variables
should be in the syntax used in Arduino, for examples see
previous page.

Once each student has declared a variable go around the
circle and have each student assign a value to their variable.
Assignment of variables should be in the syntax used in
Arduino, for examples see previous page.

Additional activities:
Students can declare their variables on pieces of construction
paper. Each variable type should have a distinct color or
shape (or some other way to identify the variable type other
than the declaration). Students can write their variable
declaration and assignment for display and personalize the
construction paper so it makes sense with their variable
name. Throughout the unit students should be encouraged
to reassign the value assigned to their variable if it changes.
Obviously you will probably want to have a designated time
for variable reassignment to avoid classroom disruption.
For example, Pam may declare char pamShirtColor; on a
shirt shaped piece of yellow construction paper (yellow to
designate it a character variable). Pam can then tape a piece
of paper with the letter ‘B’ (don’t forget the single quotation
marks) to indicate she is wearing a blue shirt. The next day
Pam may then replace the letter ‘B’ with a ‘P’ to indicate that
today she is wearing a purple shirt. You may want to limit
reassignment to once a week if your class has a tendency
to be overzealous about activities like this.

If your students are having difficulty with the concept of
variable types try this activity: Create three different shaped
holes in a board, designate one hole for each of the three
variable types. Label each hole with the corresponding
variable type and definition. Create or buy a bunch of objects
that can only fit through one of the holes and label the objects
with values that correspond to the variable type. Give the
objects out to students and explain that each object can
only be one of the three different type of variables and the
students need to match up the objects with the variable types
by putting them in the corresponding holes.

Activity

CHAPTER 3
Programming Concepts, Variables

Name:
Date:

Activity

SIK BINDER //63

Name:
Date:

CHAPTER 3
Programming Concepts, If Statements

// Vocabulary: If, Parenthesis,
Curly Brackets
The If statement is one of the most basic building blocks in computer programming. The easiest way to understand a
computer language If statement is to look at real life If statements first. If statements have two different parts, the question
and what happens if the answer to the question is yes. Below are a bunch of real life if statements. On the left are the
questions or “if” portions of the If statements. On the right are the actions that happen when the answer to the questions
are true. Unfortunately only the first If statement is connected to the correct action, the rest are up to you.

In computer programming the If statement works the same
way as real life. There is a question and something that
happens if the answer to the question is “yes”. The question
is written inside of the parenthesis () and whatever happens
if the question is true is written inside of the curly brackets { }.

Here are a couple examples of pseudo-code versions of
If statements:

If (you play around with electronics){then you can build some
cool stuff}

If (you remember parenthesis and curly brackets){then If
statements are easy}

If (you understand If statements){then you are on your way
to learning programming}

Just remember: If (the answer to this question is yes) {then
do this}

Example of an If statement:
if (val == HIGH) {
digitalWrite (ledPin, LOW);
}

All If statements start with “if” followed by the question in
parenthesis. In this example the question is; does the variable
“val” equal HIGH? (HIGH is a boolean value that is the same
as true. HIGH means there is electricity present and LOW
means there is not.) If “val” does equal HIGH then Arduino
does whatever is inside of the two curly brackets { }. In this
case it tells ledPin it should not conduct electricity. Here is
a pseudo-code of the same If statement:

If (the variable “val” has electricity running through it) {then
tell (the pin ledPin, to turn off) }

If parts of this last example don’t make sense, don’t worry,
the important thing is to understand what an If statement is.
So... If (the last example didn’t make sense) {don’t worry}.

Draw a line between the two that make the most sense together.
The first one is done for you:

If you play around with electronics

If you run over a porcupine with your bike

If you are an alien

If you do push ups and pull ups

If you put peanut butter in your sock

If you eat too much candy

If you bike everywhere you go

If you go fishing in a canoe

If you are a pirate

If you today is your Birthday

If you are a parakeet

Then you can build some cool stuff.

Then your feet will smell funny.

Then you pollute less.

Then you say Arrrrr a lot.

Then you have feathers and don’t like cats.

Then you might catch a fish or fall in.

Then you might have six arms and one eye.

Then someone might sing Happy Birthday.

Then you get stronger.

Then you get a flat tire.

Then you get sick.

Activity

SIK BINDER //64

Name:
Date:

CHAPTER 3
Programming Concepts, If Statements

Write three of the funniest, or most interesting, If
statements you can think of in the space below. Don’t
worry about putting them inside of parenthesis and curly
brackets, we’ll get to that later.

Example 1: If dinosaurs were still alive then we would have
to run a lot more.

Now write your If statements the way they would look
with the parenthesis. Don’t forget the difference between
the two different kinds of parenthesis!

Example 1: If (dinosaurs were still alive) {then we would have
to run a lot more.}

But what if there are two or more things that could
happen if the question is true?

Example 2: If dinosaurs were still alive then we would have
to run when we were outside, but if they were our pets we
could walk and we would need really big litter boxes.

Is this really just one If statement? No, it’s actually two,
and one of the If statements is inside the other. Don’t
worry! This is ok, in fact it happens all the time. Here is
how it looks in pseudo-code:

Example 2:	
If (dinosaurs were still alive){
then we would have to run a lot more, but
If (they were our pets) {
we could walk and we would need really big litter boxes} }

It may look complicated but it’s just one If statement
inside of another. There is no limit to how many Ifs you
can put inside of another If statement. Go ahead and
write one If statement with another If statement inside
of it in plain English below. Make sure you use the word
“if” twice.

Now you’re going to take that sentence and turn it into
pseudo-code. Pay attention to where the parentheses
and curly brackets are and how many there are. Start
with writing the first question, put a curly bracket just
after the question like this { and then put a curly bracket
at the very end of the lines like this }. Now put what
happens when the question is true and the second If
statement inside of your first two curly brackets. If
(you’re confused) {look at example number two.}

SIK BINDER //65

Name:
Date:

CHAPTER 3
Programming Concepts, If Statements

If (__)
{ then you can fly. }

(your dog runs away)
{ then you need to go looking for your dog. }

If (you are hungry)
{ ___________________________ }

If (__)
{ then you burp. }

If (you want to become an astronaut)
{ _______________________________ }

If (_____________________________)
{ ____________________________ }

(you build a robot)
{ ___ }

If (you build an electronic drum set)
then you can practice quietly.

If (you are an elephant)
{ _______________________________ }

(you make pancakes)
{__________________________}

If (_____________________________________)
{ you should hit the pinata. }

(you want pizza)
{_____________________________}

Now that you understand the basics of If statements you’re going to practice filling in various parts of some If statements.
These If statements are not written in code, but you should be getting comfortable with what goes where as well as the
parenthesis and curly brackets. Remember, you will only do what is in the curly brackets if the question is true. Fill in the
blanks and if you feel like it make them funny.

SIK BINDER //66

Purpose: Group activity teaching the concept of If statements and
their syntax.

Materials: Cut up sheet of silly conditionals and actions.

Vocabulary to be explained prior to activity:

If statement:
These simple statements exist in real life as well as in computer
programming. They are simple statements that indicate if something
is true or has occurred, then a resulting action takes place.
If statement pseudo-code: If (conditional) { action }

if:
The word that always starts an If statement. It’s never capitalized.

Parenthesis () :
Indicates and bookends the conditional portion of an If statement.

Conditional:
The question or condition that if true initiates the action of the If
statement.

Curly brackets { } :
Indicates and bookends the action portion of an If statement.

Action:
Portion of code that occurs when the conditional is true. This can be
anything including another If statement.

Activity:

Preparation:
Cut up the conditional and action portions of the silly If statements
included with this activity, or you can write your own and cut those up.

Activity:
First mix and then distribute the slips of paper among your students.
Explain the concept of an If statement to your students and then have
them try to match up all the conditionals with the resulting actions. It
is possible to mismatch the conditionals and actions, but this portion of
the activity is mainly to have fun and establish the idea of a conditional
and a resulting action, so don’t worry if the kids mismatch some, just
make sure you get some laughter out of this portion of the activity.

Second have seven students stand up to model portions of the If
statement. The first student is the “If”, the second student is the first
parenthesis, the third student is the conditional, the fourth student is
the closing parenthesis, the fifth student is the first curly bracket, the
sixth student is the resulting action and the final student is the closing
curly bracket. Students then model one of the silly If statements they
have matched up. Each student reads or says aloud the portion of
the If statement they represent. Once the seven students have gone
through the If statement, the last student sits down, all the standing
students move one space over to the right and a new student stands
up to join the group as the “If” portion. Students should cycle through
this way until either everyone has had a turn to be each part of the If
statement, or all the silly If statements have been used up. Encourage
students who are representing the parenthesis and curly brackets to
make parenthesis and curly brackets with their arms to demonstrate
which are opening parenthesis and curly brackets and which are closing
parenthesis and curly brackets.

Once the If statements and position of the parenthesis and brackets
have been established in your classroom you can use the semantics
where ever you see fit. For example, If (we line up quickly and quietly)
{ then we will have more recess time. }

CHAPTER 3
Programming Concepts, If Statements

Name:
Date:

Activity

SIK BINDER //67

Name:
Date:

CHAPTER 3
Programming Concepts, Loops

// Vocabulary: repetition, header,
loop body, curly brackets
In computer programming repetition means repeating a portion of code. This can happen in a bunch of different ways, but the most
important thing is to first understand how it happens, not all the different ways it can happen. There are really only two portions to any
repetition, the header and the loop body. The header usually looks about the same, but the loop body can contain any kind of code
depending on what you are programming. The loop body can even contain another repetition!

Repetition with the header, loop body, semicolons and curly brackets labeled:

Just so we’re clear on the important concepts that we will use when we talk about each different
kind of repetition, please fill in definitions or explanations of the terms below.

Repetition: ___

Header: __

Loop body: __

Curly brackets: ___

void loop ()

variableN = 0;

for (int X = 0; X < 100; x = x + 1)

while (variableN < 10)

variableN = variableN + 1;

}

}

}

Header

Header

Header

curly brackets

curly brackets

curly brackets

Loop body code goes here,
between the curly brackets. In
this example there is no code.

This is not a part of the while loop,
it just sets variableN equal to zero
before the while loop happens.

semicolons seperate three
sections of the header

Loop body code goes here,
between the curly brackets. In
this example there is no code.

Loop body code goes here, between the curly
brackets. In this example it changes variableN
so you’re not stuck in the while loop forever.

loop ():

while ():

for ():

SIK BINDER //68

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: loop ()
The most common form of iteration in Arduino is called the
loop() function. It exists in all Arduino sketches and its whole
purpose is to do all the code written inside of it once, then
start over back at the beginning of the loop() function and do
it all again. Pretty simple, right? The most important things
to remember about the loop() function are that it is present
in every single Arduino sketch, can only be used once per
sketch, and it never ends. You will not find a single Arduino
sketch that does not have a loop()function in it and whenever
anything happens in your sketch it is because of code inside
the loop() function.

The loop() function looks like this:

void loop(){
 // Lots (or just a little) of loop body code here between curly
brackets.
}

Pay attention to the header and the curly brackets which
are at the beginning and end of the loop body code. The
header is just void loop(). Think of the loop() function as a
racetrack. The loop() header portion is the flag that starts the
computer going around the racetrack and the curly brackets
are the beginning and end of the racetrack. Now imagine your
computer, Arduino, or robot running around and around the
racetrack. It’s up to you, the programmer, to put If statements,
variables and other code along the way around the racetrack.

SIK BINDER //69

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: while, loop ()
So, you just learned about loop(
), which is the simplest form of
repetition, but there are many other
forms of repetition in Arduino. Another
very common form of repetition
is the while loop. A while loop is
used when you want the computer
or Arduino to do some code while
a statement is true. The while loop
is usually found inside of the loop()
function. The code of a while loop has
two parts, the header and the loop
body code. The header is the most
important part to learn and always
has the same structure. The code in
the curly brackets below the header
can be anything, it just depends on
what you want to happen each time
the computer goes around your while
loop.

The header of a while loop has the
word while and a statement inside of
parenthesis. The while loop checks to
see if the statement inside of the
parenthesis is true and will repeat as
long as that statement remains true.
Pretty simple, right?

While loop example with variable declaration. Explanation of the while loop example.

What happens during the while loop above using our robot racetrack as an example:

At the beginning: Later on, after 100 laps:

SIK BINDER //70

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: for, loop ()
So, you just learned about while, which is a simple form of repetition, but there are many other loop functions. Another very
common form of repetition is the for loop. A for loop is used when you want the computer or Arduino to change a variable
each time through the loop and do code which often uses that variable. For loops are usually found inside of the loop()
function. The code of a for loop has two parts, the header and the code inside the loop. The header is the most important
part to learn and always looks about the same. The loop body code in the curly brackets below the header can be anything,
it just depends on what you want to happen each time the computer goes around your for loop.

The header of a for loop has the word for and in parenthesis three parts called start, check and change. Each of these parts
have semicolons between them so you can tell them apart. These three parts (circled in gray below) are the most important
parts to understand, they are the three simple parts you need to make a for loop work.

Start:
The first circled part is start, this happens before anything
else, it’s sort of like putting on running shoes before
starting to run around the track. It is a simple declaration
and assignment of a variable, in this case the variable is an
integer named x.

Check:
The second circled part is check. Every time the computer
gets to the end of the for loop the computer will check to see
if this part is true. The first time the for loop above checks,

x is equal to zero, so the for loop continues, does change
and then the code inside the curly brackets. It’s kind of like
checking how many laps a racer has completed to see if the
racer has finished the race.

Change:
The third circled part is change, after the variable is checked
it changes so that it is closer to making the check statement
false so the for loop stops. For a racer this part of the for loop
is like adding to (or updating) the number of laps or miles
the racer has completed so far in the race.

SIK BINDER //71

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: for, loop ()
Here is an example of what happens when the for loop on the previous page begins using our
robot racetrack as an example:

The next time the racing robot makes its way around the track to the starting line it has to check
again. It doesn’t have to start again, but it does need to check to see if the race is over. The first
time around the track, x will equal one and the check that x is smaller than 100 is still true. The
robot changes the variable by adding one to x again (x now equals two) and then the robot runs
around the track executing the loop body code between the curly brackets. The robot will continue
to run around the racetrack until x equals 100 at which point the computer exits the for loop.

SIK BINDER //72

CHAPTER 3
Programming Concepts, Nested Repetition

Name:
Date:

// Vocabulary: Nested, Repetition
Now that you know about repetition we can talk about ways to
put code inside of other code, which is called nesting, and in
fact most loops are nested loops since they are inside of the
original loop() function. It’s easy, all you do is put your loop
inside the curly brackets of another loop. Nested if statements
work exactly the same way as nested loops.

Example of nested loop:
void loop () {
int x = 0;
while (x < 10) {
x = x + 1;
}
}

Example of nested if statement:
if (int x < 10) {
if (x == 5) {
//code here happens if x < 10 & x = 5
}
//code here happens if x < 10
}

Imagine your loop() racetrack with another for loop racetrack
attached to it. This way each time the robot runs (or drives or
whatever) around the racetrack it must stop when it reaches
a new while loop, run around that race track until that while
loop is over and then it can continue running around the
larger loop() racetrack.

The robot has to run through the whole while loop before it
can continue running around the larger loop racetrack. But
let’s break it down a little more; x starts as zero, if x is less
than ten the robot continues running around the while loop
until x is not less than ten. If the robot is adding one to x
each time it checks the while loop then the robot must run
around the while loop a total of ten times. The robot then
exits the while loop and continues around the loop racetrack.
Next time around the racetrack the variable x will be set to
zero again just before the while loop. So, you don’t have to
worry about the while loop not working due to x being more
than or equal to ten.

You can nest as many loops inside of other loops as you like,
just make sure you don’t get stuck inside of a loop. One way
to do this is to misplace curly brackets, so make sure they’re
in the right spot. If this happens your computer or Arduino will
just freeze and you won’t really be able to tell why.

Nesting works for code other than just loops! You can nest
if statements, loops and many other code structures. All you
need to remember is that nesting is a complicated way to
say “put code inside of other code” and that the computer
eventually needs to get out of the nested statements and
back to the loop() function so everything can start over again.

SIK BINDER //73

Vocabulary to be explained prior to activity:

loop or repetition:
A section of code that repeats.

repetition header:
The line at the very beginning of a loop that tells the computer
how the code inside the loop will repeat. This section is
different for each different type of loop.

Conditional or question:
This is the statement that is checked to see if the loop is
completed. Conditionals are present in loop headers and
often look like this: x < 10. This indicates that the loop will
continue until x < 10 is false.

Increment:
The section of code (may be in the header or may be in the
loop body code) used to change the variable that is checked
in the conditional. Using the example above, x = x + 1, one
is added to x getting it a little closer to being larger than or
equal to 10.

Nested repetition:
A loop inside of a loop. This concept is key for any type of
even slightly advanced programming.

• loop:
This loop is the most basic of all loops (that’s why it’s called
loop) and is present in all Arduino sketches. loop() repeats
as long as there is power to the Arduino. Inside this form of
repetition is where you will find all other forms of repetition.

Header:
loop()

Increment:
N/A

Conditional:
Power must be on.

• while:
This loop repeats as long as the conditional listed inside the
parenthesis is true. This loop’s conditional is incremented
in the body code or through an Arduino input.

Header:
while()

Increment:
In body code or Arduino input

Conditional:
Inside header parenthesis.

• for:
This loop repeats as long as the conditional listed inside the
parenthesis is true. The for loop header declares a variable,
checks a conditional and increments the conditional variable
all inside the parenthesis...

Header:
for (int x = 0; x < 10; x = x + 1)

Increment:
Inside header parenthesis, in this example x = x + 1.

Conditional:
Inside header parenthesis, in this example x < 10.

Types of loops:

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

Purpose: Group activity teaching the concept of repetition as
used in Arduino programming. Text like this denotes actual
Arduino code.

Materials: Cones, large boards to display loop headers and
pseudo-code, equipment for physical activities, and a field
or gym.

SIK BINDER //74

Preparation:
This activity is a physical activity and you will need to set
up an obstacle loop or course that reflects the repetitions
you have decided to include in this activity. You may wish
to work with a gym teacher in order to set this activity up.

The examples in this activity require three different stations.
These include a “loop” station at the beginning of the obstacle
course with a teacher or student helper, a “while” station
with jump ropes and an area for spinning in circles, and
a “for” station with an area for doing jumping jacks and
shooting basketballs.

Each station will need a poster displaying the pseudo-code
that students need to follow in order to complete the obstacle
loop. The poster materials are included with the rest of the

activity materials in the folder programming in the file called
LoopActivityMaterials.

You will also need a field for kids to run around or cones to
set up an area for kids to run around inside a gym.

Also- this is a really big activity. It takes a lot of prep and
will probably be chaos the first time you try it, but it is easily
customizable to age or skill level and should be lots of fun
if you stick with it.

Activity:
Students should have completed the introduction to repetition
worksheets that come with this activity. Students should also
be familiar with variables and if statements.

What your loop activity might look like:

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

SIK BINDER //75

The idea is that the complete obstacle course from the start
position back to the start position represents the loop ()
function. Inside this loop () function are two nested loops, a
while () loop and a for () loop.

At the beginning of the obstacle course each student needs
to declare an integer variable called lapNumber or something
similar. This variable will be used in each of the loop activity
areas and the lap increment area. The lapNumber variable
can also be used to end the obstacle course if you do not wish
to have students run the obstacle course until the end of the
period. When students start the obstacle course lapNumber
should equal zero since they have not run any laps yet.

Nested loop activity areas: These areas are nested loops
where students will perform a certain number of tasks
depending on what your loop headers say. You can
have as many or as few activity areas as you like. You
may also tailor the number of physical tasks inside these
nested loops to make your obstacle course more fun
for your students.

These activity areas should look like little loops that the
students can run around completing tasks. The headers
should follow the format of the loop type it represents.
For examples see the end of the activity. Once inside the
nested loop activity area students must complete the physical
activities according to the pseudo-code posted inside the
nested loop activity area. Once students are done with the
first repetition of the physical activities inside the nested
loop activity areas they should look at the header again and
decide if they have completed the nested loop represented
by the header. With younger students you may want to have
someone helping them with this step. (This can be fun, the
observer can yell out error in a friendly voice if students
exit the loop too quickly) Once students have completed the
nested loop activity area they continue around the obstacle
course to the next activity.

Header examples:
If a student’s lapNumber is equal to three and the
pseudo-code header reads:

while (lapNumber > basketsMade) {
do (lapNumber * 2) jump ropes at jump rope station
shoot lapNumber basketball baskets
}

This time around the obstacle course, the student would run
through the nested loop activity area once, jumping rope six
times and shooting three baskets along the way.

If a student’s lapNumber is equal to three and the
pseudo-code header reads:

for (int x = 0; x < lapNumber * 2; x = x + 1) {
do (x * 2) jump ropes at jump rope station
shoot lapNumber basketball baskets
}

The student would run through this nested loop activity six
times jumping rope a different amount and shooting three
baskets each time for a total of thirty six jump ropes and
eighteen baskets.

There is a lot of room for personalization in this activity; it’s
an opportunity to really solidify the loop concept as well as
getting your kids some exercise.

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

SIK BINDER //76

Lap increment area:
The lap increment area is where students will add one to
their lapNumber variable to keep track of how many times
they have run the obstacle course. You can also set up the
headers and nested loop activities to use the lapNumber
variable. The lap increment area is where you might insert
an if statement to end the obstacle course after students
complete a certain number of laps.

Additional thoughts:
Definitely call the obstacle course a loop() instead of an
obstacle course in order to really get kids comfortable with
the concepts. You may also wish to include your students in
the planning of the obstacle course. Planning the obstacle
course is another opportunity to talk about the loop concept
and it gives them a stake in the learning exercise. Lastly, not
that this needs pointing out, but this is a great activity just
prior to computer lab time. Instead of having kids bouncing
off the monitors they will be calmer and ready to sit still
applying the concepts they just solidified through physical
activity. This is great for kinesthetic learners in particular.

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

